Brammer Standard Company, Inc. # Certificate of Analysis ## **BS 85D** Certified Reference Material for AISI Steel Grade 321 - UNS Number S32100 | | Certified
Value ¹ | Estimate of Uncertainty ² | Certified Values ³ | | Certified
Value ¹ | Estimate of Uncertainty ² | |----|---------------------------------|--------------------------------------|-------------------------------|----|---------------------------------|--------------------------------------| | ΑI | 0.13 | 0.01 | | Nb | 0.062 | 0.004 | | C | 0.048 | 0.003 | | Ni | 9.98 | 0.09 | | Ca | 0.0004 | 0.0001 | | Р | 0.024 | 0.002 | | Co | 0.97 | 0.02 | | S | 0.024 | 0.001 | | Cr | 17.09 | 0.05 | | Si | 0.54 | 0.02 | | Cu | 0.45 | 0.01 | | Sn | 0.0062 | 0.0009 | | Mn | 1.69 | 0.02 | | Ti | 0.48 | 0.02 | | Мо | 0.59 | 0.01 | | ٧ | 0.132 | 0.004 | ## Informational Values^{3,4} | As (0.01) | B (0.001) | Fe [67.8] | N (0.02) | O (0.002) | |------------|------------|------------|----------|------------| | Pb (0.001) | Sb (0.001) | Ta (0.001) | W (0.07) | Zr (0.004) | For each element, the certified value listed is the present best estimate of the true value based on the mean of the weighted results of an interlaboratory testing program. See page 3 for more information on its calculation. Trace element information values for Mg and Se are shown on page 3. The requirements of ISO Guides 30, 31, and 35 were followed for the preparation of this Certified Reference Material and certificate of analysis. ² For each element, the uncertainty listed is based on a statistical evaluation of the contributions of homogeneity and the interlaboratory testing program. See page 3 for more information on its calculation. ³ Values are given in weight percent. Values in brackets are reported by difference. ⁴ Values in parentheses are not certified and are provided for information only. | BS 85D | * Code for method | Certified values listed as weight percent | |--------|-------------------|---| |--------|-------------------|---| Ca Co С Analysis Uncertainty Tolerance 0.002 0.005 | Allalysis | | AI | | C | | Ca | | CO | | CI | - | Cu | | IVITI | | IVIO | | MD | | INI | |----------------|----|------------|---|--------------------|----|------------------------|----|--------------------|----|--------------------|----|---------|----|---------|----|---------|----|---------|----|---------| | 1 | 10 | 0.12 | 1 | 0.04367 | 4 | 0.0003 | 3 | 0.843 | 3 | 17.0275 | 10 | 0.43 | 4 | 1.66 | 4 | 0.568 | 4 | 0.0492 | 4 | 9.555 | | 2 | 4 | 0.125 | 4 | 0.048 | 4 | 0.0003 | 10 | 0.95 | 3 | 17.03 | 10 | 0.43933 | 10 | 1.67 | 3 | 0.575 | 3 | 0.059 | 3 | 9.95 | | 3 | 4 | 0.127 | 3 | 0.0490 | 3 | 0.000365 | 10 | 0.9593333 | 10 | 17.06 | 3 | 0.445 | 10 | 1.67 | 3 | 0.57975 | 4 | 0.062 | 10 | 9.96 | | 4 | 10 | 0.13133 | 1 | 0.0492 | 4 | 0.0004 | 3 | 0.965 | 3 | 17.0800 | 3 | 0.4450 | 3 | 1.680 | 3 | 0.5800 | 3 | 0.062 | 3 | 9.97 | | 5 | 3 | 0.134 | 3 | 0.05 | 17 | 0.0005 | 4 | 0.97 | 3 | 17.08 | 4 | 0.45 | 3 | 1.6800 | 10 | 0.58167 | 3 | 0.0620 | 3 | 9.991 | | 6 | 3 | 0.136 | 1 | 0.050 | 3 | 0.0005 | 4 | 0.97 | 18 | 17.09 | 3 | 0.45625 | 3 | 1.69 | 4 | 0.59 | 10 | 0.062 | 10 | 10.0067 | | 7 | 4 | 0.137 | 3 | 0.0503 | | | 4 | 0.990 | 4 | 17.09 | 3 | 0.461 | 4 | 1.704 | 10 | 0.59 | 4 | 0.065 | 3 | 10.0200 | | 8 | 4 | 0.139 | | | | | 4 | 0.991 | 4 | 17.11 | 4 | 0.463 | 4 | 1.71 | 4 | 0.602 | 3 | 0.066 | 4 | 10.07 | | 9 | 17 | 0.140 | | | | | 3 | 1.0000 | 10 | 17.136667 | 4 | 0.465 | 4 | 1.71 | 4 | 0.604 | 10 | 0.06867 | 4 | 10.08 | | 10 | 3 | 0.1400 | | | | | 3 | 1.05 | 4 | 17.23 | 4 | 0.465 | 3 | 1.71 | 3 | 0.61 | 4 | 0.071 | 4 | 10.20 | | 11 | 3 | 0.141 | | | | | | | | | | | 4 | 1.72 | Average | | 0.1388 | | 0.0478 | | 0.000366 | | 0.96883 | | 17.09342 | | 0.45196 | | 1.694 | | 0.58804 | | 0.0621 | | 9.98027 | | Std Dev | | 0.0050 | | 0.0027 | | 0.000029 | | 0.00010 | | 0.00010 | | 0.00010 | | 0.018 | | 0.00010 | | 0.0046 | | 0.00010 | | Н | | 0.0034 | | 0.0020 | | 0.00028 | | 0.010 | | 0.066 | | 0.0065 | | 0.01435 | | 0.0076 | | 0.0023 | | 0.046 | | U ₁ | | 0.0060 | | 0.0033 | | 0.00028 | | 0.010 | | 0.066 | | 0.0065 | | 0.023 | | 0.0076 | | 0.0051 | | 0.046 | | t-statistic | | 2.23 | | 2.45 | | 2.57 | | 2.26 | | 2.26 | | 2.26 | | 2.23 | | 2.26 | | 2.26 | | 2.26 | | U ₂ | | 0.013 | | 0.0081 | | 0.00073 | | 0.023 | | 0.15 | | 0.015 | | 0.051 | | 0.017 | | 0.012 | | 0.10 | | U ₃ | | 0.0041 | | 0.0031 | | 0.00030 | | 0.0073 | | 0.048 | | 0.0047 | | 0.015 | | 0.0054 | | 0.0037 | | 0.033 | | Certified | | 0.13 | | 0.048 | | 0.0004 | | 0.97 | | 17.09 | | 0.45 | | 1.69 | | 0.59 | | 0.062 | | 9.98 | | Uncertainty | | 0.01 | | 0.003 | | 0.0001 | | 0.02 | | 0.05 | | 0.01 | | 0.02 | | 0.01 | | 0.004 | | 0.09 | | Tolerance | | 0.03 | | 0.008 | | 0.0003 | | 0.06 | | 0.15 | | 0.03 | | 0.05 | | 0.03 | | 0.012 | | 0.27 | | A | * | _ | * | | * | 0: | * | 0 | * | - : | * | V | | | | | | T 1 | | | | Analysis
1 | 4 | P
0.022 | 3 | S
0.0226 | 10 | Si
0.5196667 | 4 | Sn
0.003 | 17 | Ti
0.452 | 3 | 0.106 | | | | | - | | | | | 2 | | | 4 | | | | 4 | | 4 | | _ | | | | | | _ | | _ | | | 3 | | 0.02367 | | 0.023 | 4 | 0.526
0.529 | | 0.0043 | | 0.460 | 3 | 0.1300 | | | | | | | | | | | 3 | | 1 | 0.02303 | 4 | | 4 | 0.0054 | 4 | 0.46 | 3 | 0.131 | | | | | _ | | | | | 4 | 3 | 0.024 | 3 | 0.024 | 4 | 0.539 | 3 | 0.0058 | 3 | 0.461 | 4 | 0.131 | | | | | | | | | | 5 | 3 | 0.024 | 3 | 0.0240 | 10 | 0.54 | 3 | 0.006 | 3 | 0.463 | 3 | | | | | | | | | | | 6 | 3 | 0.02443 | 1 | 0.0255 | 3 | 0.544 | 3 | 0.006 | 4 | 0.468 | 4 | 0.132 | | | | | | | | | | 7 | 4 | 0.025 | 1 | 0.026 | 3 | 0.54675 | 4 | 0.0067 | 4 | 0.468 | 10 | | | | | | | | | | | 8 | 4 | 0.026 | _ | | 18 | 0.549 | 17 | 0.0071 | 4 | 0.471 | 17 | | | | | | | | | | | 9 | 10 | 0.026 | | | 3 | 0.55 | 4 | 0.009 | 3 | 0.496 | 4 | 0.135 | | | | | | | | | | 10 | 4 | 0.0267 | | | 4 | 0.55 | 3 | 0.0090 | 3 | 0.5000 | 4 | 0.136 | | | | | | | | | | 11 | | | | | 3 | 0.5600 | | | _ | 0.5283333 | 10 | 0.138 | | | | | | | | | | 12 | | | | | 17 | 0.57 | | | 10 | 0.53 | | | | | | | - | | | | | Average | | 0.0243 | | 0.02402 | | 0.548 | | 0.00623 | | 0.479778 | | 0.1323 | | | | | + | | | | | Std Dev | | 0.0019 | | 0.00038 | | 0.012 | | 0.00010 | | 0.000091 | | 0.0049 | | | | | | | | | | Н | | 0.0014 | | 0.0014 | | 0.007 | | 0.00079 | | 0.0068 | | 0.0033 | | | | | _ | | | | | U ₁ | | 0.0023 | | 0.0015 | | 0.014 | | 0.00079 | | 0.0068 | | 0.0059 | | | | | _ | | | | | t-statistic | | 2.26 | | 2.45 | | 2.20 | | 2.26 | | 2.20 | | 2.20 | | | | | + | | | | | U ₂ | | 0.0053 | | 0.0036 | | 0.030 | | 0.0018 | | 0.015 | | 0.013 | | | | | _ | | | | | U ₃ | | 0.0017 | | 0.0014 | | 0.0088 | | 0.00057 | | 0.0043 | | 0.0038 | | | | | _ | | | | | Certified | | 0.024 | | 0.024 | | 0.54 | | 0.0062 | | 0.48 | | 0.132 | | | | | - | | | | | Ussantalata | | 0.024 | | 0.024 | | 0.34 | | 0.0002 | | 0.40 | _ | 0.132 | | | _ | | + | | _ | | Cr Cu Mn Mo Nb Ni ## **BS 85D** * Code for method Informational values listed as weight percent 0.02 0.06 0.0009 0.0027 0.001 0.004 | Analysis | * | As | * | В | * | Fe | * | N | * | 0 | * | Pb | * | Sb | * | Ta | * | W | * | Zr | |----------------|----|--------|---|---------|----|--------|---|-----------|---|----------|----|---------|----|---------|----|---------|----|---------|---|---------| | 1 | 4 | 0.0041 | 4 | 0.00047 | 3 | 67.68 | 2 | 0.0154 | 2 | 0.001853 | 3 | 0.0001 | 10 | 0.0003 | 10 | 0.0010 | 4 | 0.053 | 4 | 0.002 | | 2 | 3 | 0.0042 | 3 | 0.00061 | 16 | 67.835 | 2 | 0.0225367 | | | 4 | 0.0003 | 17 | 0.00096 | 4 | 0.0010 | 4 | 0.0566 | 3 | 0.0035 | | 3 | 3 | 0.006 | 3 | 0.0007 | | | 3 | 0.0230 | | | 4 | 0.00039 | 4 | 0.0010 | | | 10 | 0.060 | 3 | 0.005 | | 4 | 3 | 0.0060 | 3 | 0.0007 | | | | | | | 17 | 0.00043 | 4 | 0.0012 | | | 3 | 0.06363 | | | | 5 | 17 | 0.0065 | 3 | 0.0008 | | | | | | | 3 | 0.0016 | 3 | 0.003 | | | 4 | 0.067 | | | | 6 | 4 | 0.0068 | 3 | 0.0010 | | | | | | | 3 | 0.0021 | | | | | 3 | 0.077 | | | | 7 | | | 4 | 0.0014 | | | | | | | 3 | 0.0036 | | | | | 4 | 0.078 | | | | 8 | | | | | | | | | | | | | | | | | 4 | 0.111 | | | | Average | | 0.006 | | 0.0008 | | 67.76 | | 0.02 | | 0.002 | | 0.0012 | | 0.0013 | | 0.0010 | | 0.07 | | 0.004 | | Std Dev | | 0.045 | | 0.0019 | | 0.11 | | 0.28 | | 0.021 | | 0.0039 | | 0.0052 | | 0.0052 | | 0.47 | | 0.033 | | Н | | 0.001 | | 0.0004 | | 0.18 | | 0.00 | | 0.001 | | 0.0004 | | 0.0004 | | 0.0004 | | 0.00 | | 0.001 | | U ₁ | | 0.045 | | 0.0019 | | 0.21 | | 0.28 | | 0.021 | | 0.0040 | | 0.0052 | | 0.0052 | | 0.47 | | 0.033 | | t-statistic | | 2.57 | | 2.45 | | 12.71 | | 4.30 | | 12.71 | | 2.45 | | 2.78 | | 12.71 | | 2.36 | | 4.30 | | U ₂ | | 0.11 | | 0.0047 | | 2.69 | | 1.20 | | 0.27 | | 0.010 | | 0.014 | | 0.066 | | 1.10 | | 0.14 | | U ₃ | | 0.047 | | 0.0018 | | 1.90 | | 0.69 | | 0.27 | | 0.0037 | | 0.0064 | | 0.047 | | 0.39 | | 0.081 | | Informationa | ı | (0.01) | | (0.001) | | [67.8] | | (0.02) | | (0.002) | | (0.001) | | (0.001) | | (0.001) | | (0.07) | | (0.004) | 0.02 0.06 0.004 0.013 For each element, in accordance with the requirements of ISO 17034 and Guide 35, an effort must be made to account for the effects on the certified value of the uncertainty estimate from homogeneity testing (H) and the uncertainties of the contributing laboratories. The average (A) is calculated using a weighted mean where the reciprocal of the square of each laboratory's combined uncertainty (C_L), calculated from its standard deviation (S_L) and its uncertainty estimate (U_L), is used as the weight (W_L) for it's mean (M_L) . The standard deviation (S) is calculated as the square root of the reciprocal of the sum of the weights. U_1 is the combined uncertainty from homogeneity and labs. U_2 is U_1 multiplied by the coverage factor (95 % t-statistic). U_3 is U_2 divided by the square root of the number of determinations (n). Thus: $$C_{L} = \sqrt{S_{L}^{2} + U_{L}^{2}} \qquad W_{L} = \frac{1}{C_{L}^{2}} \qquad A = \frac{\sum_{i=1}^{n} W_{L} M_{L}}{\sum_{i=1}^{n} W_{L}} \qquad S = \frac{1}{\sqrt{\sum_{i=1}^{n} W_{L}}} U_{1} = \sqrt{H^{2} + S^{2}} \qquad U_{2} = t \times U_{1} \qquad U_{3} = \frac{U_{2}}{\sqrt{n}}$$ All but the final reported values are taken to two significant figures as determined by each quantity's uncertainty estimate. The final reported Uncertainty is U₃ rounded to one significant figure and represents the half width of the 95 % confidence interval for the Certified value. The final reported Certified value is A rounded to the same decimal place as the Uncertainty. The Uncertainty is a measure of the quality of the Certified value. The Tolerance is a measure of the expected performance of an analysis. This involves further expanding the sample uncertainty to include instrument and operator uncertainty, for those without access to such calculations. For further information regarding the confidence interval for the certified value see ISO Guide 35:2006 section 6. **BS 85D** * Code for analytical method Trace analysis listed as mg/kg (ppm) | Analysis | * | Mg | * | Se | | | | | | | | | | | | |----------|---|------|----|----|--|--|--|--|--|--|--|--|--|--|--| | 1 | 3 | 3.88 | 10 | 10 | | | | | | | | | | | | #### **Analytical Method Codes:** Combustion (ASTM E1019) 7 Photometric 13 Titrimetric 2 Fusion (ASTM E1019) Flame Atomic Absorption 14 DCP Atomic Emission 9 GF Atomic Absorption 3 Spark Atomic Emission 15 HG Atomic Fluorescence ICP Atomic Emission 10 X-Ray Fluorescence 16 Difference 4 5 11 GD Atomic Emission 17 AAS ICP Mass Spectrometry 6 Gravimetric 12 GD Mass Spectrometry ICP = Inductively Coupled Plasma GF = Graphite Furnace GD = Glow Discharge DCP = Direct Current Plasma HG = Hydride Generation AAS = Atomic Absorption Spectrometry | Lab Name | Location | Registrar | Accreditation | |------------------------------------|------------------------|-----------|---------------| | Brammer Standard Company, Inc. | Houston, TX | A2LA | 17025, 17034 | | Anderson Laboratories, Inc. | Greendale, WI | A2LA | 17025 | | Jones & Laughlin Steel Corporation | Pittsburgh, PA | n/a | n/a | | ATI Allvac | Lockport, NY | ANAB | 17025 | | Dirats Laboratories | Westfield,MA | ANAB | 17025 | | Crucible | Syracuse, NY | n/a | n/a | | Republic Engineered Steels, Inc. | Canton, OH | n/a | n/a | | Hoesch Stahl AG | Gelsenkirchen, Germany | n/a | n/a | | Brammer Standard Company, Inc. | Houston, TX | A2LA | 17025, 17034 | A2LA = American Association for Laboratory Accreditation ANAB = ANSI-ASQ National Accreditation Board <u>Analysis:</u> Chemical analyses were made on solid pieces and chips prepared by a lathe from representative samples for the certified portion of the lot in accordance with ASTM Standard Practice E1806. The laboratories participating in the testing followed the requirements of ISO Standard 17025. <u>Traceability:</u> The following Certified Reference Materials were used to validate the analytical data: BAS 466/1, 467/1, 475; ECRM 284-1, 286-1; SRM 73C, 101G, 121D, 160B, 344, 345, 348A. <u>Homogeneity:</u> This Certified Reference Material (CRM) was tested for homogeneity using ASTM Standard Method E826 and found acceptable. It was also examined by spark atomic emission spectrometry and found to be compatible with the following Reference Materials — BAS 338, 431/1; BS HON T, HON U, SS3951, 81G, 85B, 179A, 321A; IARM 189A; IMZ 196; LECO 501-676; NCS NS 20035b; SRM 293, 1171; Y 41340b. <u>Validity statement:</u> ISO Guide 31 states that the certification should contain an expiration date for all materials where instability has been demonstrated or is considered possible, after which the certified value is no longer guaranteed by the certifying body. The certification of BS 85D is valid indefinitely. The certification is nullified if this CRM is damaged, contaminated, or otherwise modified. **Storage:** This CRM must be stored in a cool, dry, non-corrosive environment. Source: The bar stock for this CRM was produced by Carpenter Technology Corporation, Reading, PA. <u>Form:</u> This CRM is machined in the form of a disc approximately 38 mm in diameter and 19 mm thick by Brammer Standard Company, Inc. <u>Use:</u> This CRM is intended for use in spark atomic emission, glow discharge, and x-ray spectrometric methods of analysis. Refer to ISO Guide 33 for information about the use of Certified Reference Materials. Certified Area: The entire depth of the CRM may be used. Caution: As with any bar material, avoid spark atomic emission spectrometric burns in the center of the CRM (5 mm radius), as some segregation may be present. <u>Sample Preparation:</u> For best analytical results, use the same method for preparing the analytical surface on all reference materials as used for production specimens. Avoid overheating the sample during surface preparation. Caution: CRM contains significant insoluble soft metal inclusions. Surface smearing may occur. Spark atomic emission spectrometers may require extended preburns to compensate. <u>Certificate Number:</u> The unique identification number for this certificate of analysis is REV85D-041118. You may obtain information on revisions of certificates from the internet at <u>www.brammerstandard.com</u>. <u>Safety Notice:</u> A Safety Data Sheet (SDS) is not required for this material. This material will not release or otherwise result in exposure to a hazardous chemical, under normal conditions of use. Inquiries concerning this Reference Material should be directed to: Brammer Standard Co., Inc. Phone: (281) 440-9396Web: <u>www.brammerstandard.com</u> 14603 Benfer Road Houston, Texas 77069-2895 USA Fax: (281) 440-4432 Email: contact@brammerstandard.com Revision: This certified reference material was originally certified as a reference material on March 21, 1991, and it was revised on January 5, 1994 to include nitrogen and oxygen values after a new interlaboratory study was performed. This was before extensive homogeneity studies were employed. A comprehensive homogeneity study, including additional information about its contribution to the uncertainty estimates, was performed. Sn has been changed from informational to certified. As, B, N, Nb, O, Pb, Sb, and W have been changed from certified to informational. Revised values for all elements except Al, Ca, Co, Cu, Cr, Mn, Mo, S, and Ti are presented. Informational values for Fe, Ta, and Zr are provided. All trace data are presented in mg/kg (ppm). A number of trace elements have been added. Brammer Standard Company, Inc., is accredited by the American Association For Laboratory Accreditation (A2LA) to ISO Standard 17034 as a Reference Material Producer for the production of Certified Reference Materials and Reference Materials (Certificate Number 656.02) Brammer Standard Company's Chemical Laboratory is accredited by A2LA to ISO Standard 17025. (Certificate Number 656.01) By Certificate Number 10539, the Quality System of Brammer Standard Company, Inc., is registered to ISO 9001 by National Quality Assurance (NQA), U.S.A. The scopes of accreditation are listed on the website: www.brammerstandard.com ### References: Versions used were those available at the time of testing and characterization E826 Standard Practice for Testing Homogeneity of a Metal Lot or Batch in Solid Form by Spark Atomic Emission Spectrometry E1019 Standard Test Methods for Determination of Carbon, Sulfur, Nitrogen, and Oxygen in Steel, Iron, Nickel, and Cobalt Alloys by Various Combustion and Fusion Techniques E1806 Standard Practice for Sampling Steel and Iron for Determination of Chemical Composition ISO Standard 17025:2005 General requirements for the competence of testing and calibration laboratories ISO Standard 9001:2015 Quality Management Systems - Requirements ISO Guide 30:2015 Terms and definitions used in connection with reference materials + 2008 amendment ISO Guide 31:2015 Reference materials - Contents of certificates and labels ISO Guide 33:2015 Uses of certified reference materials ISO Standard 17034:2016 General requirements for the competence of reference material producers ISO Guide 35:2006 Reference Materials - General and statistical principles for certification ASTM documents available from ASTM, 100 Barr Harbor Dr., West Conshohocken, PA 19428. ISO Guides and Standards available from Global Engineering - www.global.ihs.com Other useful documents available from NIST, U.S. Department of Commerce, Gaithersburg, MD 20899. NIST Special Publication 260-100, Handbook for SRM Users NIST Special Publication 829, Use of NIST Standard Reference Materials for Decisions on Performance of Analytical Chemical Methods and Laboratories Certified by: on April 11, 2018. Beau R. Brammer Certificate Number REV85D-041118 Page 6/6 President